Proofs and Proof Strategies

- Discrete Mathematics (Kenneth Rosen)
 - -8^{th} edition -1.7-1.8

What is a Proof?

- Proof: A valid argument establishing the truth of a mathematical statement.
- Ingredients:
 - Hypotheses (if any)
 - Axioms/Postulates
 - Previously proven theorems
 - Rules of inference
- Two styles:
 - Formal proofs: detailed, step-by-step (machine-friendly)
 - Informal proofs: concise, human-readable (skipping trivial steps)

Importance of Proofs

- Core to mathematics and computer science:
 - Program correctness
 - Security of operating systems
 - Consistency of system specifications
 - Reasoning in Al
- Essential skill: constructing & understanding proofs.
- Predicate logic is an extension of propositional logic that permits concisely reasoning about whole classes of entities.
 - *E.g.,* "x>y", "x=5".
- Such statements are neither true or false unless the values of the variables are not specified. Hence, these aren't propositions.

Terminology

- Formally and technically, any statement that can be shown to be true
 using a valid argument (i.e. a proof) is a theorem.
- But in mathematical writing (i.e. papers etc),
- **Theorem** important proven statement.
- Proposition "less important" theorem.
- **Lemma** "theorems" that help proving main theorems.
- Corollary follows directly from a theorem.
- **Conjecture** statement believed true by some partial evidence, not yet proven. Many times, these conjectures are disproven.
- These aren't "formal" definitions.

How Theorems Are Stated

- Often implicitly universally quantified:
 - "If x > y, then $x^3 > y^3$ "
 - Really means: "For all real numbers x, y, if x > y then $x^3 > y^3$."
- Standard proof structure:
 - Pick an arbitrary element
 - Show property holds for that element
 - Conclude it holds for all

How Theorems Are Stated

- Often implicitly universally quantified:
 - "If x > y, then $x^2 > y^2$ "
 - Really means: "For all real numbers x, y > 0, if x > y then $x^2 > y^2$."
- Hence, make sure that the quantifiers are specified in your theorems.

Methods of Proofs

Strategies for proving theorems:

- Direct proof
- Proof by contraposition
- Vacuous proof
- Trivial proof
- Proof by contradiction
- Proof of equivalence
- Proof by cases
- Counterexamples (to disprove ∀ statements)

Methods of Proofs

1.7

Strategies for proving theorems:

- Direct proof
- Proof by contraposition
- Vacuous proof
- Trivial proof
- Proof by contradiction
- Proof of equivalence
- Proof by cases
- Counterexamples (to disprove ∀ statements)

1.8

Direct Proof

- To prove q, given p:
 - Assume p is true
 - Show q must be true
- Example:

If n is odd, then n^2 is odd.

- Let n = 2k + 1, where k is an integer.
- Then $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \rightarrow$ odd.

Proof by Contraposition

- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- Assume ¬q, show that p is false.
- Example:
 If 3n+2 is odd, then n is odd.
 - Contrapositive: If n is even, then 3n+2 is even.

Vacuous & Trivial Proofs

- Vacuous proof:
 If p is false, then p→q is true.
- Example: Show that the proposition P(0) is true, where P(n) is "If n > 1, then $n^2 > n$ " and the domain consists of all integers.
- "If 0>1, then $0^2>0$ "
- Trivial proof:
 If q is true, then p→q is true regardless of p.

Proof by contradiction.

- Proofs of Equivalence
- To prove $p \leftrightarrow q$:
 - Prove both $p \rightarrow q$ and $q \rightarrow p$.
- Example: "n odd $\Leftrightarrow n^2$ odd"
 - Forward: Assume n odd, show n^2 is odd
 - Backward: Assume n^2 is odd, show n is odd

Counterexamples

- To disprove ∀xP(x), show one example where P(x) is false.
- Example:
 - "Every positive integer is the sum of two squares."
 - Counterexample: 3.

Proof by contradiction.

- Assume statement is false
- Derive a contradiction (something and its negation)
- Conclude assumption was wrong → statement true.

Proof Strategy

- Start with direct proof (expand definitions).
- If stuck, try:
 - Contraposition
 - Contradiction
- Consider trivial or vacuous cases.
- For equivalences, break into implications.
- To disprove ∀, search for counterexamples.

Detailed version of Proof by exhaustion and cases.

Motivation

- Not all theorems can be proved by a single argument.
 - Sometimes, we must consider different cases separately.
 - Leads to two important techniques:
 - Exhaustive Proof (Proof by Exhaustion)
 - Proof by Cases

Rule of Inference

- To prove: $(p1 \lor p2 \lor ... \lor pn) \rightarrow q$
 - Equivalently prove: $(p1 \rightarrow q) \land (p2 \rightarrow q) \land ... \land (pn \rightarrow q)$
 - Break down into cases and prove each conditional separately.
 - This is called proof by exhaustion.

Example 1 – Exhaustive Proof

- Prove: $(n+1)^3 \ge 3^n$ for $n \le 4$.
 - $n=1: 8 \ge 3$
 - $n=2: 27 \ge 9$
 - n=3: 64 ≥ 27
 - n=4: 125 ≥ 81
 - ✓ True for all four cases.

Example 2 – Exhaustive Proof

- Claim: Only consecutive perfect powers ≤ 100 are 8 and 9.
 - Squares ≤100: 1,4,9,16,25,36,49,64,81,100
 - Cubes ≤100: 1,8,27,64
 - Other powers ≤100: 16,32,64,81 ...
 - Only 2^3=8 and 3^2=9 are consecutive perfect powers.

Exhaustive Proof

- Special case of proof by cases (we will see in the next slide).
 - All possible instances are explicitly checked.
 - Works only when the number of possibilities is small.
 - Example: Checking all integers in a finite range.

Proof by Cases

- Generalization of proof by exhaustion.
- What if you don't have only finite possibilities.
- A theorem may involve different scenarios.
 - Divide proof into finitely many cases.
 - Prove theorem separately in each case.
 - Each case may contain infinitely many points, but share some property.
 - Combine results to complete proof.

Proof by Cases

- Generalization of proof by exhaustion.
- What if you don't have only finite possibilities.
- A theorem may involve different scenarios.
 - Divide proof into finitely many cases.
 - Prove theorem separately in each case.
 - Each case may contain infinitely many points, but share some property.
 - Combine results to complete proof.

Formally,

- To prove:
- $\forall x \in D, P(x) \rightarrow Q(x)$
- 1. Divide the domain:
- $D = D_1 \cup D_2 \cup ... \cup D_n$
- 2. Prove separately:
- $\forall x \in D_1, P(x) \rightarrow Q(x)$
- $\forall x \in D_2$, $P(x) \rightarrow Q(x)$
- •
- $\forall x \in D_n, P(x) \rightarrow Q(x)$
- 3. Conclude:
- $\forall x \in D, P(x) \rightarrow Q(x)$

Example.

- Claim:
- $\forall n \in \mathbb{Z}, n^2 \ge n$
- Partition domain:
- $-D_1 = \{0\}$
- $-D_2 = \{n \in \mathbb{Z} \mid n \ge 1\}$
- $-D_3 = \{n \in \mathbb{Z} \mid n \leq -1\}$
- Check cases:
- $\forall n \in D_1, n^2 \ge n$
- $\forall n \in D_2, n^2 \ge n$
- $\forall n \in D_3, n^2 \ge n$
- Therefore:
- $\forall n \in \mathbb{Z}, n^2 \ge n \checkmark$

Example 3 – Proof by Cases

- Claim: For any integer n, $n^2 \ge n$.
 - Case 1: $n=0 \rightarrow 0^2=0$.
 - Case 2: $n \ge 1$ → $n^2 \ge n$.
 - Case 3: $n \le -1 \rightarrow n^2 \ge 0 > n$.
 - ─ Holds in all cases.

Example 4 – Proof by Cases

- Claim: |xy| = |x||y| for real numbers x,y.
 - Cases:
 - 1. x≥0, y≥0
 - -2. x≥0, y<0
 - -3. x<0, y≥0
 - -4. x<0, y<0
 - All yield same result. ✓

Without Loss of Generality (WLOG)

- Used to combine symmetric cases.
 - Example: Instead of proving both (x≥0,y<0) and (x<0,y≥0), prove one.
 - Say: 'WLOG, roles are symmetric.'
 - ⚠ Must ensure no loss in generality.

Example 7 – WLOG + Proof by Cases

- Claim: If xy and x+y are even, then x,y are even.
 - Assume WLOG x odd.
 - Case 1: y even \rightarrow x+y odd \times contradiction.
 - Case 2: y odd \rightarrow xy odd \times contradiction.
 - Thus, both must be even.

Common Errors

- Checking only examples (not all cases).
 - \times Missing a case (e.g., forgetting x=0).
 - Incorrect use of WLOG.
 - Example: Claim 'x^2 always positive' missed case x=0.

What is an Existence Proof?

- Many theorems assert the existence of an object.
- General form: $\exists x P(x)$. Existence proof = proof of $\exists x P(x)$.
- Two types:
 - Constructive: find a witness a such that P(a) holds.
 - Nonconstructive: show $\exists x P(x)$ without explicitly finding a.

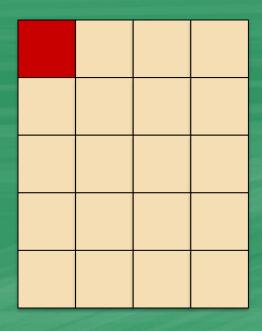
Constructive Proof (Example)

- Provide an explicit example (witness).
- Example 10:
 Show there exists a positive integer expressible as sum of cubes in two ways.
 - $-1729 = 10^3 + 9^3 = 12^3 + 1^3$
- Famous anecdote: Hardy & Ramanujan ("taxicab number").

Non Constructive Proof

Game of Chomp.

Chomp Game



- Chomp is a two-player game played on an $m \times n$ grid of cookies.
- Players take turns eating a cookie and all cookies in the rectangle from that cookie to the top-left corner. That is, all the cookies to the below and the right of the chosen cookie.
- The player who is forced to eat the cookie at position (1,1) i.e. top-left, loses.
- ► Goal: Prove the first player has a winning strategy without specifying the moves.

Game Termination (No Draw)

• Each move removes at least one cookie from the $m \times n$ grid.

• Maximum number of moves: $m \times n$.

 The game always ends (no draws possible) because the grid is finite.

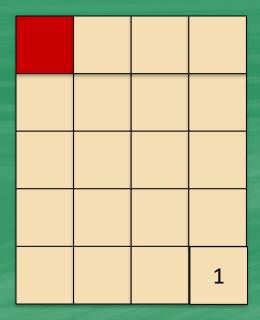
First Player's Initial Move

- Suppose the first player eats only the cookie at the bottom-right corner, position (m, n).
- This move leads to two possibilities:
 - This is the first move of a winning strategy for the first player. That is, the best move that makes it a winner.
 - The second player can respond with a move that starts a winning strategy for them. Which means that second player is the winner.

Second Possibility: Strategy Stealing.

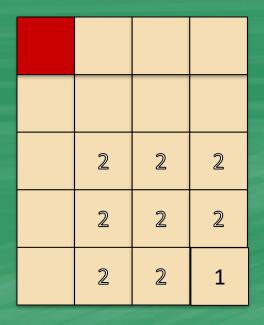
- If the second player has a winning move after the first player eats (m, n), call this move M.
- Move M must be a valid first move in the original $m \times n$ grid (since it removes cookies connected to the top-left).
- Instead of eating (m, n), the first player could have played move M.

First Player's Initial Move



Either this is the best strategy for player I

Player II can win by the next move



That is, the first move of the player I leads to its loss.

But Player I can just imitate this in the first move

1	1	1
1	1	1
1	1	1

Hence, Player I can steal the strategy.

Hence, first player can always win.

- If move *M* starts a winning strategy for the second player, the first player can adopt *M* as their first move.
- By following the winning strategy that *M* initiates, the first player ensures a win.
- Thus, the first player always has a winning strategy, either by eating (m, n) or by choosing M.

Nonconstructive Existence Proof

- Nonconstructive Existence Proof
- This proof shows a winning strategy exists for the first player without specifying the moves.
- It is a nonconstructive existence proof because it does not provide an explicit strategy.
- No general winning strategy is known for all rectangular grids.

Uniqueness Proofs

 Theorems may assert the existence of exactly one element with a property.

• General form: $\exists x P(x)$ and $\forall y(y \neq x \rightarrow \neg P(y))$

Two components: Existence + Uniqueness

Structure

• Existence: Show at least one element exists.

Uniqueness: Suppose x and y both satisfy P.
 Prove x = y.

Example (Existence)

• Claim: If $a, b \in \mathbb{R}$, $a \neq 0$, then $\exists ! r \in \mathbb{R}$ such that ar + b = 0.

- Existence:
- Let r = -b/a.
- Check: a(-b/a) + b = -b + b = 0.
 - A solution exists.

Example (Uniqueness)

Suppose r = -b/a and s is another solution.

- Then ar + b = as + b \rightarrow ar = as.
- Divide by a $(\neq 0)$: r = s.
- The solution is unique.

Summary

Uniqueness proofs = Existence + Uniqueness.

• Symbolically: $\exists !x P(x) \equiv \exists x (P(x) \land \forall y (y \neq x \rightarrow \neg P(y))).$

 Example: ar + b = 0 (a ≠ 0) has exactly one solution.

Strategies for Proofs

- Try both Forward and Backward Reasoning.
- Try to adapt the existing proofs of similar theorems.
- If you believe that a statement is wrong, try looking for counter examples.
 Try some small counter examples first.
- Also make use of your intuition (which lead you to believe why the conjecture is wrong) to construct the example.