
Proofs and Proof Strategies

• Discrete Mathematics (Kenneth Rosen)

– 8th edition – 1.7-1.8



What is a Proof?

• Proof: A valid argument establishing the truth of a 
mathematical statement.

• Ingredients:
– Hypotheses (if any)

– Axioms/Postulates

– Previously proven theorems

– Rules of inference

• Two styles:
– Formal proofs: detailed, step-by-step (machine-friendly)

– Informal proofs: concise, human-readable (skipping trivial 
steps)



Importance of Proofs

• Core to mathematics and computer science:
– Program correctness
– Security of operating systems
– Consistency of system specifications
– Reasoning in AI

• Essential skill: constructing & understanding proofs.
• Predicate logic is an extension of propositional logic that 

permits concisely reasoning about whole classes of entities.
E.g., “x>y”,  “x=5”.

• Such statements are neither true or false unless the values 
of the variables are not specified. Hence, these aren’t 
propositions.



Terminology

• Formally and technically, any statement that can be shown to be true 
using a valid argument (i.e. a proof) is a theorem. 

• But in mathematical writing (i.e. papers etc),

• Theorem – important proven statement.

• Proposition – “less important” theorem.

• Lemma – “theorems” that help proving main theorems.

• Corollary – follows directly from a theorem.

• Conjecture – statement believed true by some partial evidence, not yet 
proven. Many times, these conjectures are disproven.

• These aren’t “formal” definitions.



How Theorems Are Stated

• Often implicitly universally quantified:

– “If 𝑥 > 𝑦, then 𝑥3 > 𝑦3”

– Really means: “For all real numbers 𝑥, 𝑦,
if 𝑥 > 𝑦 then 𝑥3 > 𝑦3.”

• Standard proof structure:

– Pick an arbitrary element

– Show property holds for that element

– Conclude it holds for all



How Theorems Are Stated

• Often implicitly universally quantified:

– “If 𝑥 > 𝑦, then 𝑥2 > 𝑦2”

– Really means: “For all real numbers 𝑥, 𝑦 > 0, if 
𝑥 > 𝑦 then 𝑥2 > 𝑦2.”

• Hence, make sure that the quantifiers are 
specified in your theorems. 



Methods of Proofs

Strategies for proving theorems:
– Direct proof

– Proof by contraposition

– Vacuous proof

– Trivial proof

– Proof by contradiction

– Proof of equivalence

– Proof by cases

– Counterexamples (to disprove ∀ statements)
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Direct Proof

• To prove q, given p:

– Assume p is true

– Show q must be true

• Example:
If 𝑛 is odd, then 𝑛2 is odd.

– Let 𝑛 = 2𝑘 + 1, where 𝑘 is an integer.

– Then 𝑛2 = 4𝑘2 + 4𝑘 + 1 = 2 2𝑘2 + 2𝑘 + 1→ 
odd.



Proof by Contraposition

• p→q ≡ ¬q→¬p

• Assume ¬q, show that p is false.

• Example:
If 3n+2 is odd, then n is odd.

– Contrapositive: If n is even, then 3n+2 is even. 



Vacuous & Trivial Proofs

• Vacuous proof:
If p is false, then p→q is true.

• Example: Show that the proposition P(0) is 
true, where P(n) is “If n > 1, then 𝑛2 > n” and 
the domain consists of all integers.

• “If 0>1, then 02 > 0”

• Trivial proof:
If q is true, then p→q is true regardless of p.



Proof by contradiction.

• Proofs of Equivalence

• To prove 𝑝 ↔ 𝑞:

– Prove both 𝑝 → 𝑞 and 𝑞 → 𝑝.

• Example:
“𝑛 odd ⇔𝑛2 odd”

– Forward: Assume 𝑛 odd, show  𝑛2 is odd

– Backward: Assume 𝑛2 is odd, show 𝑛 is odd



Counterexamples

• To disprove ∀xP(x), show one example where 
P(x) is false.

• Example:
“Every positive integer is the sum of two 
squares.”

– Counterexample: 3.



Proof by contradiction.

• Assume statement is false

• Derive a contradiction (something and its 
negation)

• Conclude assumption was wrong → statement 
true.



Proof Strategy

• Start with direct proof (expand definitions).

• If stuck, try:

– Contraposition

– Contradiction

• Consider trivial or vacuous cases.

• For equivalences, break into implications.

• To disprove ∀, search for counterexamples.



• Detailed version of Proof by exhaustion and 
cases.



Motivation

• Not all theorems can be proved by a single 
argument.

– Sometimes, we must consider different cases 
separately.

– Leads to two important techniques:

• Exhaustive Proof (Proof by Exhaustion)

• Proof by Cases



Rule of Inference

• To prove: (p1 ∨ p2 ∨ … ∨ pn) → q

– Equivalently prove: 
(p1 → q) ∧ (p2 → q) ∧ … ∧ (pn → q)

– Break down into cases and prove each conditional 
separately.

– This is called proof by exhaustion.



Example 1 – Exhaustive Proof

• Prove: (n+1)^3 ≥ 3^n for n ≤ 4.

– n=1: 8 ≥ 3

– n=2: 27 ≥ 9

– n=3: 64 ≥ 27

– n=4: 125 ≥ 81

–✅ True for all four cases.



Example 2 – Exhaustive Proof

• Claim: Only consecutive perfect powers ≤ 100 
are 8 and 9.

– Squares ≤100: 1,4,9,16,25,36,49,64,81,100

– Cubes ≤100: 1,8,27,64

– Other powers ≤100: 16,32,64,81 …

– Only 2^3=8 and 3^2=9 are consecutive perfect 
powers.



Exhaustive Proof

• Special case of proof by cases (we will see in 
the next slide).

– All possible instances are explicitly checked.

– Works only when the number of possibilities is 
small.

– Example: Checking all integers in a finite range.



Proof by Cases

• Generalization of proof by exhaustion.
• What if you don’t have only finite possibilities.

• A theorem may involve different scenarios.
– Divide proof into finitely many cases.
– Prove theorem separately in each case.
– Each case may contain infinitely many points, but 

share some property.
– Combine results to complete proof.



Proof by Cases

• Generalization of proof by exhaustion.
• What if you don’t have only finite possibilities.

• A theorem may involve different scenarios.
– Divide proof into finitely many cases.
– Prove theorem separately in each case.
– Each case may contain infinitely many points, but 

share some property.
– Combine results to complete proof.



Formally,

• To prove:
• ∀x ∈ D, P(x) → Q(x)

• 1. Divide the domain:
• D = D₁ ∪ D₂ ∪ … ∪ Dₙ

• 2. Prove separately:
• ∀x ∈ D₁, P(x) → Q(x)
• ∀x ∈ D₂, P(x) → Q(x)
• ...
• ∀x ∈ Dₙ, P(x) → Q(x)

• 3. Conclude:
• ∀x ∈ D, P(x) → Q(x)



Example.

• Claim:
• ∀n ∈ ℤ, n² ≥ n

• Partition domain:
• - D₁ = {0}
• - D₂ = {n ∈ ℤ | n ≥ 1}
• - D₃ = {n ∈ ℤ | n ≤ -1}

• Check cases:
• ∀n ∈ D₁, n² ≥ n
• ∀n ∈ D₂, n² ≥ n
• ∀n ∈ D₃, n² ≥ n

• Therefore:
• ∀n ∈ ℤ, n² ≥ n ✓



Example 3 – Proof by Cases

• Claim: For any integer n, n^2 ≥ n.

– Case 1: n=0 → 0^2=0.

– Case 2: n≥1 → n^2 ≥ n.

– Case 3: n ≤ -1 → n^2 ≥ 0 > n.

–✅ Holds in all cases.



Example 4 – Proof by Cases

• Claim: |xy| = |x||y| for real numbers x,y.

– Cases:

– 1. x≥0, y≥0

– 2. x≥0, y<0

– 3. x<0, y≥0

– 4. x<0, y<0

– All yield same result. ✅



Without Loss of Generality (WLOG)

• Used to combine symmetric cases.

– Example: Instead of proving both (x≥0,y<0) and 
(x<0,y≥0), prove one.

– Say: 'WLOG, roles are symmetric.'

–⚠️ Must ensure no loss in generality.



Example 7 – WLOG + Proof by Cases

• Claim: If xy and x+y are even, then x,y are 
even.

– Assume WLOG x odd.

– Case 1: y even → x+y odd ❌ contradiction.

– Case 2: y odd → xy odd ❌ contradiction.

– Thus, both must be even. ✅



Common Errors

• ❌ Checking only examples (not all cases).

–❌ Missing a case (e.g., forgetting x=0).

–❌ Incorrect use of WLOG.

– Example: Claim 'x^2 always positive' missed case 
x=0.



What is an Existence Proof?

• Many theorems assert the existence of an 
object.

• General form: ∃x P(x).Existence proof = proof 
of ∃x P(x).

• Two types:

– Constructive: find a witness a such that P(a) holds.

– Nonconstructive: show ∃x P(x) without explicitly 
finding a.



Constructive Proof (Example)

• Provide an explicit example (witness).

• Example 10:
Show there exists a positive integer 
expressible as sum of cubes in two ways.

– 1729 = 10³ + 9³ = 12³ + 1³

• Famous anecdote: Hardy & Ramanujan 
(“taxicab number”).



Non Constructive Proof

• Game of Chomp.



Chomp Game

▶ Chomp is a two-player game played on an m × n 
grid of  cookies.

▶ Players take turns eating a cookie and all 
cookies in the rectangle from that cookie to the top-left 
corner. That is, all the cookies to the below and the 
right of the chosen cookie.

▶ The player who is forced to eat the cookie at 
position (1,1) i.e. top-left, loses.

▶ Goal: Prove the first player has a winning strategy 
without specifying the moves.



Game Termination (No Draw)

• Each move removes at least one cookie from 
the m × n grid.

• Maximum number of moves: m × n.

• The game always ends (no draws possible) 
because the grid is finite.



First Player’s Initial Move

• Suppose the first player eats only the cookie 
at the bottom-right corner, position (m, n).

• This move leads to two possibilities:

– This is the first move of a winning strategy for the 
first player. That is, the best move that makes it a 
winner.

– The second player can respond with a move that 
starts a winning strategy for them. Which means 
that second player is the winner.



Second Possibility: Strategy Stealing.

• If the second player has a winning move after 
the first player eats (m, n), call this move M.

• Move M must be a valid first move in the 
original m × n grid (since it removes cookies 
connected to the top-left).

• Instead of eating (m, n), the first player could 
have played move M.



First Player’s Initial Move

Either this is the best strategy for player I

1



Player II can win by the next move

That is, the first move of the player I leads to its loss.

1



But Player I can just imitate this in the 
first move

Hence, Player I can steal the strategy.

1



Hence, first player can always win.

• If move M starts a winning strategy for the 
second player, the first player can adopt M as 
their first move.

• By following the winning strategy that M 
initiates, the first player ensures a win.

• Thus, the first player always has a winning 
strategy, either by eating (m, n) or by 
choosing M.



Nonconstructive Existence Proof

• Nonconstructive Existence Proof

• This proof shows a winning strategy exists for 
the first player without specifying the moves.

• It is a nonconstructive existence proof 
because it does not provide an explicit 
strategy.

• No general winning strategy is known for all 
rectangular grids.



Uniqueness Proofs

• Theorems may assert the existence of exactly 
one element with a property.

• General form: ∃x P(x) and ∀y(y ≠ x → ¬P(y))

• Two components: Existence + Uniqueness



Structure

• Existence: Show at least one element exists.

• Uniqueness: Suppose x and y both satisfy P. 
Prove x = y.



Example (Existence)

• Claim: If a, b ∈ ℝ, a ≠ 0, then ∃! r ∈ ℝ such 
that ar + b = 0.

• Existence:

• Let r = -b/a.

• Check: a(-b/a) + b = -b + b = 0. 
✅ A solution exists.



Example (Uniqueness)

• Suppose r = -b/a and s is another solution.

• Then ar + b = as + b → ar = as.

• Divide by a (≠ 0): r = s.

• ✅ The solution is unique.



Summary

• Uniqueness proofs = Existence + Uniqueness.

• Symbolically: 
∃!x P(x) ≡ ∃x (P(x) ∧ ∀y(y ≠ x → ¬P(y))).

• Example: ar + b = 0 (a ≠ 0) has exactly one 
solution.



Strategies for Proofs

• Try both Forward and Backward Reasoning.

• Try to adapt the existing proofs of similar theorems.

• If you believe that a statement is wrong, try looking for 
counter examples. 
Try some small counter examples first.

• Also make use of your intuition (which lead you to 
believe why the conjecture is wrong) to 
construct the example.


